Science Fairs Unfair?

Science fairs suck! — Year after year throughout the US, and around the world, when science fair season comes along, I hear these exact words from kids, parents and teachers. I probably hear these sorts of things more than most people, because I served as leader of one of the oldest science fairs — if not the oldest state fair in the country — for well over a decade. Not to mention, I held (and probably still hold) the record for first place science fair wins in Massachusetts, and likely one of the top in the country.

Barnas Monteith was a two-time Grand Award winner in high school at the International Science and Engineering Fair.

I’ve judged and spoken at national fairs in numerous countries, and have written a few books on the topic. Four of my business partners are people I’ve met through science fairs, and I continue to be involved decades after my first science fair in middle school. I’ve pretty much been doing science fairs my whole life (among other science & engineering related things), and I hope you find my point of view valuable.

In my travels around the world to different science fairs, I can’t even count how many times I’ve heard some variation of the following:

  • Science fairs wreak havoc on families and living room floors. All that rushing around at the last minute, buying materials and making a giant mess. It’s expensive and it’s not really part of school. How can this be educational?
  • It’s impossible for kids to come up with ideas for science fairs on their own when their life experiences are so short; and, how are they expected to commit to that single project idea for 3 or possibly 6 months?
  • Most top-winning science fairs are done by wealthy, academic parents. Everybody knows this. How can regular kids have any chance at winning something?
  • How can a science fair be “fair” when there are kids from so many different backgrounds, and different income levels? There’s no way that my kid, from a poor town, could afford all the supplies and equipment to compete against the kids from the rich towns, who seem to win every year.
Continuing reading here about Barnas’ suggestions for fixing science fair equity:  Science Unfair. Science fairs suck! —  Year after year… | by Barnas Monteith | Mediu

Example of a science project in the 1950’s. Electrophoresis science fair project by Taimi Toffer Anderson; Acc. 90–105 — Science Service, Records, 1920s-1970s, Smithsonian Institution Archives

Is there anything left to discover?

I remember reading an article several years ago in Time magazine (Monday, Apr. 10, 2000) about a debate between Paul Hoffman, former editor of Discover magazine & past president of the Encyclopedia Britannica and John Horgan, author of a controversial book, The End of Science.

In the debate, Horgan tried to convince Hoffman that “…we’ve discovered all we can realistically expect to discover and that anything we come up with in the future will be pretty much small-bore stuff.” If you buy this line of thinking, then there is no reason to have any more science fairs!

Astrophysicist John Bahcall, who helped to prove what makes the sun shine, said it best, “The most important discoveries will provide answers to questions that we do not yet know how to ask and will concern objects we have not yet imagined.”

Let’s look at the evidence of some of the biggest scientific breakthroughs and discoveries over the past 16 years…since the Discover article was released:

  • The human genome project was completed
  • Two teams of scientists, one in Wisconsin the other in Japan, announced their discovery of a way to make stem cells without using embryonic stem cells.
  • The evidence of gravitational waves was discovered.
  • The first self-replicating, synthetic bacterial cell was created.
  • An artificial liver was developed to be used as a bridge for the liver transplant, minimizing the chances of liver failure.
  • The discovery of a previously unknown human ancestor, homo nalendi, was found in a cave in South Africa.
  • The development of the first new antibiotic in 30 years – teixobactin – to fight growing drug-resistance.
  • The World Wildlife Foundation announced the discovery of 211 new species in the Eastern Himalayan region, including 133 plants, 39 invertebrates, 26 fish, 10 amphibians, one reptile, one bird, and one mammal.
  • The Large Hadron Collider (LHC) was built, a 17-mile-long looped track located an average of 300 feet beneath the Earth’s surface under the Swiss-French border, which accelerates two beams of particles to 1.2 trillion electron volts (TeV) and then smashes them together. The solving of the Higgs boson is said to be one of the greatest scientific mysteries of modern times.
  • Scientists at the Genome Sequencing Center report that they have sequenced all the DNA from the cancer cells of a woman who died of leukemia and compared it to her healthy cells. In doing so, the experts found mutations in the cancer cells that may have either caused the cancer or helped it progress. It is the first time scientists have completed such research.
  • Water was discovered on the surface of Mars
  • Scientists have created a vaccine that seems to reduce the risk of contracting the AIDS virus.
  • Scientists have published the first comprehensive analysis of the genetic code of the Y chromosome.
  • The Hubble telescope has detected the oldest known planet—and it appears to have been formed billions of years earlier than astronomers thought possible, 12.7 billion years ago.
  • Two new solar systems were discovered.
  • The world’s first vaccine was developed against the malaria parasite, which has been shown to be effective against even the most deadliest strains.
  • Jadarite was discovered; it is an essential component in the production of batteries for cellphones, computers, and electric or hybrid cars.
  • Exoplanets have been confirmed to exist revolving around distant stars similar to our sun. As a result, we may begin a rethinking of the universe and our place within it.
  • A vaccine preventing cervical cancer was developed.
  • Then, there were the inventions of the iPod, the iPhone, hybrid cars, the Segway transporter, 3-D printing, augmented reality, and using water as fuel.

While there may be a debate about which of these or other discoveries are the Top 10 of the past fifteen years or so, there should be no question that the above evidence illustrates how important it is to train and support the next generation of scientists.

Improving Science Project Understanding with Poetry

This summer, I had the pleasure of attending the final presentations by middle school students who attended a summer space science program organized by the Christa McAuliffe Center for Integrated Science Learning at Framingham State University.  As I went around the room talking with each group of students, I was amazed by the detailed information the students knew about the subjects of their displays.  I was fascinated by the range of subject matter, from detailed plans of a planetarium, through a model of the solar system to a recently discovered world made of water.

I figured that the students were space-fans before they participated, so asked each of them whether they had previous knowledge about their subject or had learned it from the summer program.  To my surprise, all but one student responded that they had just learned the material as part of the program.

As I was driving home, I remembered each of the students enthusiastically asking me if I would like to hear the poem they had written about their project. Each poem, short or long, was packed with an amazing amount of rich and colorful imagery!  At first it seemed strange to combine science and poetry, but then I read a 2015 NIH report that states, “Poetry hones critical skills in imagery, metaphor, analogy, analysis, observation, attentiveness, and clear communication. All of these are commonly useful in understanding, problem-solving, and decoding scientific and medical mysteries.”

It’s true what they say, “Poetry can make a topic memorable through the use of well-chosen words and vivid images.”  Kudos to the staff at the Christa McAuliffe Center for Integrated Science Learning for guiding students in an unforgettable experience.  Perhaps, those of us who assist students to get ready for their science fair presentations can incorporate this method to help them better understand their project.

A Hiaku about The Hercules Cluster

Poem about the “Freeze-Burn” planet

Poems about the Orion, Ring, Dumbbell and Crab Nebulae

Don’t Attack the Science Fair Project – Embrace It!

I was upset last year when I saw this photo, below, printed in the Huffington Post and circulate through social media.  It seems like every year there is the angst that a science fair project assignment creates for many students and their families. It’s unfortunate that science fairs and independent research projects seem to get attacked this way. As a new school year kicks off, it’s a great time for parents to take a fresh look at what science fair is all about, the role parents should play, and what everyone involved can do to make the process less stressful for all involved and a success.

To start with, attitude plays a huge role in how students approach their science fair project. Maybe you had a bad experience with a science project as a child, but adults need to put that experience behind them and to understand the process so that if they encourage their child with a positive perspective, the end result may not be as traumatic.

For whatever reason you cringe at the thought of a science fair project, you are not alone. But instead of shying away from it you need to embrace it because even though your child may not grow up to be a scientist, the learning that happens by doing a hands-on science project is enormous. For starters, it integrates almost every skill children have been taught and 21st Century skills your child needs to experience from reading, writing, research, math and critical thinking, to computer science, graphic arts, public speaking, gaining confidence and the thrill of discovery. As a parent, you should encourage all this blended learning rather than discourage it.

So before you groan, and before you allow your child to complain about his or her science fair project, realize that your response might have an impact on it being a positive experience and a great learning opportunity.

And, let’s not forget that if your child is selected to go on to local or national competition, it can pay off in cash or other prizes, and may open the doors to internships and scholarships.

What’s the best reaction you can have when you discover there’s a science project due? How about saying something like, “Wow, that’s great, maybe you can do a project about [insert your child’s favorite hobby, interests, subject, etc. here].  Then, help them get started right away.

Elsewhere on this website you’ll find information about how to get started, and how to choose a science fair topic if you don’t already have ideas. If you have any questions, please don’t hesitate to contact us: info (at) MisterscienceFair.com or via our web contact form.

Make sure you also regularly check our Facebook page for on-going ideas and information about other competitions you can enter.

We know this is not a real science fair project (this never made it to a science fair – it stays permanently in the home of a very frustrated mom who made this project to show her frustrations - see Huffington Post article here).  Don’t let this happen to your family. Don’t start your child’s science fair experience off on the wrong foot!

How to create a great…and winning science project

You’re probably at this website because you (or your child) has been assigned to do a science project this year. This is NOT like your other school work and definitely should not be treated the same way.

Doing a science project doesn’t have to be anything like school work. In fact it can be great fun if you choose a topic or project on something that’s really interesting to you like plants or food, or computers or sports? Do you enjoy roller coasters, computer games or dinosaurs? Have you ever asked yourself why something works the way it does? Do you care about the environment or forensic investigations?

Science is all around you. What’s great about a science fair project is you get to create your own question – and, find the answer to it. You can do a science project on anything that interests you. You’re only limited by your own imagination!

It doesn’t matter if you’re in elementary school, middle school or high school, you should go through the same process to pick a topic. The most important thing is to choose a subject that’s interesting and fun for you — and your science fair project won’t be mind-numbing like some of your other schoolwork might be. It will only become a chore if you wait until the last minute to try and get it done.

If you’re genuinely interested in the subject of your science project, then your interest will come through in the quality of your project and, in your interviews with the judges.

Come back and visit our web site over the next several weeks and months, as we create the step by step process to not only survive your science fair experience – but thrive with it.  Next time – help in choosing a topic.

Make sure you also regularly check our Facebook page for on-going ideas and information about other competitions you can enter.

A high school science fair project…about dinosaurs!

Let’s go back to what I consider to be the most important part of creating a great science fair project, and what might be the really hard part of doing a science fair project – choosing a topic. Most students dread the thought of doing a science fair project, so I really can’t emphasize enough the importance to parents of helping a child find a science fair topic that they are interested in.

Let’s look at things from your child’s perspective. Unless your child likes to fertilize the lawn, a project comparing the effects of different fertilizers on sections of your lawn will be boring, uninteresting (may make your lawn look funny) and will not spur them on to enjoying the science fair experience. How about a project which compares the growth of plants when you play different types of music to them? This might be a fun experiment for your child, especially when he or she will have to play rap music every day for several weeks… loud enough to hurt your ears; but it’s been done at least a thousand times. And, unless your child is a musical prodigy and will be able to answer the judge’s questions about specific differences that may have affected the results between the various genres of music, then this might not be the best topic to choose.

Helping your child choose a science fair project topic that he or she is interested in is important, not only for them to develop an interest in doing the project and to learn from it, but it also might be an opportunity for you to learn something about your child you may not have known before. If you have a child in elementary school, you might want to have them gather their favorite story books and sit down together to see if there are any commonalities between the themes or subjects in the book, and choose a science fair topic based on some of those subjects.

With a middle school or high school child, ask questions about their interests, favorite subjects in school, or what things they’d really like to know more about like “How does a bridge stay up and not collapse under the weight of all those cars?”. Brainstorm possible project s with them. Unless you’re an expert in one of those areas, encourage your child to call or write someone who is an expert on the subject, to give them some ideas about how to narrow the idea down to an experiment.

No subject area should be considered absurd. My son’s passion for all-things-dinosaurs as a 6 year-old led to a week-long Paleontology camp in Montana when he was 12. After some encouragement and advice about doing a science fair project on dinosaur eggshells from the scientists he met at the camp as well as from staff at the local science museum where he took a summer workshops on how a Scanning Electron Microscope works, he then set out to research the subject at our local university library. With funding from his high school physics teacher for stamps, he then wrote letters to curators of museums and zoos all around the world describing what he wanted to do with his project, and asked for samples of fossilized and non-fossilized eggshells.

We were all quite astounded when he started receiving packages with pieces of eggshells, and in one case – an entire emu and ostrich egg! With eggshells in hand, and a more refined idea about his project, calls to local science equipment companies and college professors allowed him access to some incredible equipment. This eventually turned into four years of high school science fair projects comparing fossilized eggshells with those of modern day birds (he was hoping to find a missing link between dinosaurs and birds).

Some of the more interesting & fun science fair projects takes time to develop (most of my son’s eggshell samples didn’t arrive for about 2-3 months after he first sent out his letters), so it’s never too early to start the process of coming up with a topic, to figure out the best way to approach the subject or, to make contacts with experts (or in my son’s case, egg-sperts) to get the guidance to make it a fun and valuable learning experience.

Scanning Electron Microscope (SEM) photos of fossilzed eggshells from Barnas Monteith’s 9th grade Science Fair Project

Nurturing inquisitive minds

Several parents have asked me over the years, “What did you do to fuel your son’s passion for science?”

As someone who became a math major in college with the hope of someday realizing my dream of working for NASA and the space program, I used to love watching my son develop an appetite for science.  It was deeply satisfying for me to see him explore his personal interests in geology and paleontology – interests that would not only eventually become hobbies and science fair projects, but would also lead him to a career in these and other science-related areas when he grew up.  Don’t we all yearn to have fun at our jobs?

A lot of his interest in science was originally sparked by taking him to the Museum of Science and to the Aquarium, where he was first introduced to the “ooo’s” and “aaaahhh’s” of biology, chemistry, astronomy, oceanography, electricity and… dinosaurs.  What kid (or adult) isn’t fascinated with the Van de Graaff generator, the huge T-Rex, or real sharks in huge tanks? They can all be kind of scary when a child is very young!  But most museums also have wonderful interactive exhibits and trained professionals to help explain what your child is experiencing in ways that may help them want to learn more.

The courses my son took at the Museum and Aquarium, on weekends and during school vacations when he was an elementary school student, allowed him to have a hands-on experience in “the art of experimentation” with activities, materials and equipment that I couldn’t afford to supply at home, at an age when it could (and obviously did) make a lasting impression.

When it came time for him to start working on school science projects and his science fair projects, the contacts he had made at the Museum of Science, in particular, were invaluable to opening many doors.  The Museum staff not only helped him develop his project ideas, but helped him to find access to materials, labs and equipment not often available to someone so young.

The most valuable thing you can do to help your child start developing an interest in the fascinating world of science is to encourage regular visits to a science museum.  Encourage them to take the courses there, and when they express an interest in a specific topic, nurture their natural curiosity until it blossoms into their own experiment or project.  A museum course instructor or workshop leader may even agree to become a mentor to your child, and may be best equipped to help your child to expand upon ideas and interests.

What are your ideas for nurturing kids and getting them to develop a greater interest in, or appreciation for science ? Share your thoughts below.

15 year old Barnas Monteith was able to get access to equipment at Yale University as a result, in part, of the credibility he obtained by taking courses at the Boston Museum of Science