Science Fairs Unfair?

Science fairs suck! — Year after year throughout the US, and around the world, when science fair season comes along, I hear these exact words from kids, parents and teachers. I probably hear these sorts of things more than most people, because I served as leader of one of the oldest science fairs — if not the oldest state fair in the country — for well over a decade. Not to mention, I held (and probably still hold) the record for first place science fair wins in Massachusetts, and likely one of the top in the country.

Barnas Monteith was a two-time Grand Award winner in high school at the International Science and Engineering Fair.

I’ve judged and spoken at national fairs in numerous countries, and have written a few books on the topic. Four of my business partners are people I’ve met through science fairs, and I continue to be involved decades after my first science fair in middle school. I’ve pretty much been doing science fairs my whole life (among other science & engineering related things), and I hope you find my point of view valuable.

In my travels around the world to different science fairs, I can’t even count how many times I’ve heard some variation of the following:

  • Science fairs wreak havoc on families and living room floors. All that rushing around at the last minute, buying materials and making a giant mess. It’s expensive and it’s not really part of school. How can this be educational?
  • It’s impossible for kids to come up with ideas for science fairs on their own when their life experiences are so short; and, how are they expected to commit to that single project idea for 3 or possibly 6 months?
  • Most top-winning science fairs are done by wealthy, academic parents. Everybody knows this. How can regular kids have any chance at winning something?
  • How can a science fair be “fair” when there are kids from so many different backgrounds, and different income levels? There’s no way that my kid, from a poor town, could afford all the supplies and equipment to compete against the kids from the rich towns, who seem to win every year.
Continuing reading here about Barnas’ suggestions for fixing science fair equity:  Science Unfair. Science fairs suck! —  Year after year… | by Barnas Monteith | Mediu

Example of a science project in the 1950’s. Electrophoresis science fair project by Taimi Toffer Anderson; Acc. 90–105 — Science Service, Records, 1920s-1970s, Smithsonian Institution Archives

Dinosaurs…and the new STEM literacy requirements

My son’s avowed interest in all-things-dinosaurs from the age of ten, combined with the boundless sense of wonder that all kids have, made it possible for him to use his four high school science fair projects to interpret the microstructures of dinosaur eggshells in some ways other scientists had not previously thought of.  As a result, he delivered a presentation to more than a thousand scientists at the annual Society of Vertebrate Paleontology Conference — at the age of 20.

Informal science education, such as the type of learning a student gets outside of the normal classroom environment by participating in a science fair, provides kids with an in-depth and hands-on look at “real world” science.  While it’s possible that participation in a science fair can open doors for students who have already discovered their abilities and passion for science, it can also help students develop an interest in science which could be important to them no matter what career they choose.

Getting students interested in hands-on science now is actually very important for another reason, since a new national set of science education standards is under development. The Next Generation Science Standards have a targeted release date of 2013.

Some of the most important arguments for the Next Generation Science Standards are: 1) American students are falling behind in math and science, performing at levels below students in competitor nations on international tests; the United States currently ranks 25th in math and 17th in science among developed nations, 2) fewer students are pursuing careers in Science, Technology, Engineering and Math (STEM) disciplines, and 3) science is profoundly important to address the problems we’re now facing such as preventing and curing diseases, maintaining supplies of clean water and addressing the energy crisis.

Our collective futures are dependent upon students being interested in science.  The purpose of more science education, broadly expressed as ‘STEM literacy’ is to motivate all students (not just the parents and students who are already a fan of science) to fully engage in the very active practices of science and engineering. Aside from the movement to provide 100,000 STEM teachers over the next decade, the other important reason to help your child become interested in science is that through the Next Generation Science Standards, students will be tested on STEM literacy in school.

As your child passes through all grade levels, the new Next Generation Science Standards testing will be evaluating your child’s skills and capabilities in areas such as:
1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

In essence, the new standards recognize that “science, engineering and technology permeate every aspect of modern life” and that by the time a student graduates high school they “should have sufficient knowledge of science and en­gineering to engage in public discussions on science-related issues, to be critical consumers of scientific information related to their everyday lives, and to be able to continue to learn about science throughout their lives.” (See the Report Brief from the Framework for K-12 Science Education for more details.).

Being a scientist or having an interest in science is no longer relegated to a bunch of old men in white coats with goggles, pens in pocket protectors, grumpy attitudes and an inability to talk about anything other than research.

A scientist can be someone who is 20 or 30 years old and who digs dinosaur eggs in the Montana badlands, does all his communication through a PDA, excitedly jumps up and down upon finding a 20-million-year-old fossil of a previously undiscovered life-form, and enjoys talking about music and videos and computer games and lots of other things with his friends.

A non-scientist – but someone who has an interest in, and an understanding of science – might be the salesperson at the appliance store who can help you select the most cost-effective furnace, or the grocery store clerk who understands the potential for botulism if meat isn’t properly refrigerated, or the politician who’s fighting for a clean-energy policy.

Science is all around us, and it benefits everyone at every age, to become more science literate.

Barnas Monteith standing next to Society for Vertebrate Paleontology Logo

As a college junior, Barnas Monteith was given the distinct honor of being the youngest person to give a Plenary session lecture before the Society for Vertebrate Paleontology, which is the central professional organization for dinosaur paleontologists from around the world. Barnas’ interest in dinosaurs since he was six years old, led to his cross-disciplinary study of eggshells for his four years of high-school science fair projects.